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It is possible (and occasionally preferable) to define bond
energies of polyatomic molecules by dissociation of the
molecule at a given bond into two radical fragments, e.g. for
a tetra-atomic molecule ABCD.

However it has long been recognized that the quantity derived
in this manner will bear little relation to the actual energy
content of the bond in the molecular ground-state equilibrium
geometry, due to internal reorganization of the radical frag-
ments. Clearly, a rigorous method for determining the distribu-
tion of bonding energy at the equilibrium geometry of a
polyatomic molecule using its wavefunction or charge density
would be highly desirable. In particular, it would provide a
powerful analytical tool for quantum chemistry by enabling
precise, quantitative statements to be made about the nature of
bonds in a given environment, as an alternative to other indirect
measures such as bond lengths; bond orders; charges or higher
multipoles; or (in some cases) aromaticity indices.1,2

E (B–C) · E(ABCD)–E(AB·)–E(CD·) (1)

Traditionally, the energies of specific bonds in a molecule
have been estimated from its atomization energy SD0 (if
vibrationally corrected) or SDe by making assumptions about
other bonds in the molecule. For example, the energy of the C–C
bond in ethyne, ethene or ethane may be calculated ‘precisely’
if the C–H bond energy is assumed to be either constant for all
three compounds, or the same as the bond energy in methane
(trivially SDe/4). Other approaches to calculating bond energies
which should be mentioned here include Grimme’s idea of
parameterizing the atomization energy in terms of bond critical
point (topological) properties;3 Bader’s proposal of relating the
bond energy to the integral of the energy density over the
interatomic surface;4 and Krygowski et al’s method of para-
meterizing the C–C bond energies as a single exponential
function of experimentally observed bond lengths.5

Like Grimme’s approach, the method outlined here does not
make any assumptions about the constancy of C–C bond
energies across any series of compounds, enabling individual
bond energies to be derived for each such bond in a molecule.
Our approach is to parameterize the potential energy surface for
each bond in a way which best reproduces the atomization
energies across a series of related compounds, assuming only
that chemically similar types of atoms interact via the same
potential.

Molecular geometries and total energies of benzene, naph-
thalene, five linear polyacenes (anthracene, tetracene, penta-
cene, hexacene and heptacene), five angular phenacenes
(phenanthrene, chrysene, picene, fulminene and [7]phenacene)
and four ‘composite’ benzenoid hydrocarbons (triphenylene,
pyrene, perylene, coronene) were obtained at B3LYP/
6-311G** level of theory, and used in the subsequent fitting
procedure. Comparing the best experimental bond length values
for benzene, naphthalene and anthracene, derived from low-
temperature crystallographic studies and corrected for libra-
tional effects,6 we find very good agreement with structures

optimized at this level of theory, around 0.006 Å mean
difference. Vibrationless atomization energies SDe were de-
rived from the molecular total energies by subtracting the
energies of the free ground state atoms at the same level of
theory, i.e. C(3P) = 237. 85599 and H(2S) = 20.50216, in
Hartree atomic units. The parameterization procedure begins by
defining a set of additive bond energies with respect to an
estimated vibrationless atomization energy SDe

calc:
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At first glance, the above partitioning of atomization energy
seems inappropriate for the systems we have chosen to illustrate
the method, namely p-electron molecules with conjugated p-
bonds, and aromatic hydrocarbons in particular. An extension of
the HMO model due to Longuet-Higgins and Salem7 predicts
the following bond-energy contribution for any pair of neigh-
boring carbon atoms m and n

Emn (C–C) =  2{U(r) + 2pmn b(r)} (3)

where r is the C–C distance, U(r) and ß(r) are the s-bond
potential energy and the resonance integral, respectively, and
pmn represents the p-electron bond order for atoms m and n. The
latter quantity depends on the LCAO-MO coefficients of all the
occupied MOs, and thus is a function of the whole molecular
geometry, not just the m–n distance r. On the other hand at the
equilibrium molecular geometry there is a simple linear
relationship between the bond order pe

mn and the equilibrium
bond distance re

mn:

pe
mn = p(re

mn) = (R1 2 re
mn)/(R1 2 R2) (4)

where R1 (R2) is the length of a ‘pure’ single (double) C–C bond
of the sp2–sp2 type. It follows from eqs. (3) and (4) that for p-
electron hydrocarbons at equilibrium there is a universal
function E(r) which defines bond energies as dependent of
equilibrium bond distances re

mn,

Emn (C–C) = E(re
mn) (5)

The above result is valid providing that all the carbon atoms in
the molecule are considered equivalent (a usual assumption in
the HMO model). However, in aromatic molecules one finds
two kinds of atoms: tertiary (with one hydrogen atom attached)
and quaternary (with no hydrogen atom attached). Thus, up to
three kinds of C–C bonds may be distinguished in these
molecules (see below), with possible different bond-energy
functions Ei(r), (i = 1,2,3).

In our approach, the C–C bond energies are represented by
one or more Morse functions, slightly modified to give E (C–C)
= De at r = re (rather than zero energy at r = re).

Ei (C–C) = De
i {1 2 [1 2 exp {2ai (r 2 re

i)}]2} (6)

slightly modified to give E (C–C ) = De at r = re , rather than
zero energy at r = re (here re and De correspond to the minimum
of the Morse function, not to some equilibrium bond distance).
The subscript/superscript i labels the Morse function to be
applied. In fact it would be equally feasible to parameterize
Ei(C–C) with a three parameter harmonic model, i.e.

† Electronic supplementary information (ESI) available: data for attempted
fittings and exact and calculated atomisation energies for the final model.
See http://www.rsc.org/suppdata/cc/b0/b007657k/
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Ei (C–C) = De
i {1 2 ai (r 2 re

i) 2} (7)

but since the Morse function allows for anharmonicity without
introducing any more parameters, we consider it superior for
this application. At first, the bonds to terminal hydrogen atoms
were also parameterized with Morse functions, but it was found
essentially impossible to extract this data from the atomization
energies (the optimized C–H bond lengths vary from just 1.084
to 1.086 Å over the whole data set). Thus the single value of
E(C–H) for all such bonds was finally chosen as a parameter in
the fitting procedure.

The next step is to define a normalized c2 statistic which will
be minimized with respect to variations in the model parameters
during the fitting procedure.

c2
e

calc
e
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mols

= -S S S{ D D
n

(8)

This statistic is minimised in a simple iterative algorithm
employing numerical partial first derivatives of eqn. (5) with
respect to the model parameters in SDe

calc. This has been
implemented as a MATHEMATICA 48 routine which is freely
available from the authors, on request.

Topologically we can distinguish three types of C–C bond in
polyacenes (see Fig. 1). These are (i) bonds between carbon
atoms both bearing hydrogens; (ii) bonds between carbon atoms
where only one of the carbons bears a hydrogen; and (iii) bonds
between carbon atoms where neither bears a hydrogen. Thus it
could be expected that the potential energy surface for these
three types of bonds will differ, such that three independent
Morse functions for each type of bond will be required to
correctly describe all types of polyacene. However, we began
the fitting procedure assuming that a single C–C potential
energy surface might describe all types of C–C bonds, i.e. a
four-parameter fit of {De, a, re} plus E(C–H) for all sixteen
compounds. The result was quite poor reproduction of the
‘exact’ B3-LYP/6-311G** atomization energies by the model
calculated ones: the average (percentage) accuracy 100(c2/
nmols)

1
2 being just 0.5%. Subsequent improvement of the model

by distinguishing between chemically distinct types of C–C
bond led to a final model with ten parameters (three Morse
functions as described above) reproducing the atomization
energies with 0.04% average accuracy over all sixteen com-
pounds. The fitted model parameters are as follows (in units of
kJ mol21, Å21 and Å): type (i) C–C bonds {De, a, re} =
{530.83, 5.052, 1.3549}; type (ii) C–C bonds {DeA,aA,reA} =
{498.45, 6.448, 1.3922}; type (iii) C–C bonds {DeB,aB,reB} =
{490.49, 4.102, 1.3642}; and E(C–H) = 431.47 kJ mol21. The
data for all of the fits attempted and the exact and calculated
atomization energies for the final model are supplied as ESI.†.
Here we will just mention that by far the worst agreement
between any SDe and SDe

calc is found for septacene (SDe =
25212 kJ mol21 and SDe

calc = 25232 kJ mol21, a 0.08% error).
It should be noted that an error of 20 kJ mol21 on the
atomization energy represents < 1 kJ mol21 error on the
average C–C bond energy, since septacene has 30 C–C
bonds.

The bond energies derived from the final model by
substituting the optimized C–C bond lengths for r in eqn. (6)
vary over a range of 438–531 kJ mol21 in the sixteen
compounds, with the C–C bond energy in benzene being at the
upper end of this range. The complete distribution of C–C
bonding energy is illustrated in Fig. 2 for just a few of the
molecules: benzene, perylene and coronene. The values for
perylene and coronene nicely demonstrate the Clar classifica-

tion9 of so-called ‘empty rings’ at the centre of composite
polyacenes. The energies of innermost C–C bonds are much
lower than those of the outermost bonds of the molecules,
indicating that p-electron stabilization is concentrated in the
peripheral rings (e.g. the difference in C–C bond energies
between the peripheral rings and the central rings in perylene
and coronene is 246 and 107 kJ mol21, respectively). It should
also be mentioned that the bond energies reported here, and
those derived by this method in general, will be slightly higher
than any experimental estimates because by necessity we use
SDe values (e.g. the experimental SD0 for benzene is 5464.8 kJ
mol21, compared with our SDe value of 5670 kJ mol21).

To test whether the fitted parameters from our best model are
sufficiently general to reproduce atomization energies and
hence bond energies for polyacenes not in the fitting set of
sixteen compounds, we have optimized four additional mole-
cules at the same level of theory: benz[a]anthracene, benzo[c]-
phenanthrene; benzo[e]pyrene and benzo[g,h,i]perylene. In-
deed, we find that the ten-parameter Morse model reproduces
the atomization energies of these compounds to the same
accuracy obtained for the compounds present in the fit. So we
may conclude that the parameters given here are sufficiently
general to predict bond energies for most benzenoid hydro-
carbons, with the possible exception of helicenes, where strong
steric interactions may need to be explicitly treated in the
model.

In addition to providing individual bond energy data, this
parameterization procedure leads to a model of the molecules in
question whose parameters also lend themselves to chemical
interpretation. Consider the harmonic force constant f = 2a2De
computed as the second partial derivative of  eqn. (3) with
respect to r. The model predicts f for type (i), (ii) and (iii) C–C
bonds approximately in the ratio 1.6+2.5+1.0, information that
probably has not been obtained before by any other method,
experimental or theoretical.

In conclusion: the method for determining polyatomic
molecule bond energies presented here should be applicable to
essentially any series of related compounds (not only hydro-
carbons); with the proviso that a more detailed treatment of the
C–H bond and some types of steric or long-range interactions
may be required for some families of compounds.
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Fig. 1. Definition of C–C bond types.

Fig. 2. C–C bond energies (kJ/mol21) for benzene, perylene and
coronene.
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